Tác động lan truyền của A.I và sự bất ổn trên thị trường năng lượng: Một phân tích bằng mô hình vectơ tự hồi quy phân vị (QVAR)
DOI:
https://doi.org/10.33301/JED.VI.2672Từ khóa:
Trí tuệ nhân tạo, biến động thị trường năng lượng tái tạo, biến động toàn cầu, QVARTóm tắt
Nghiên cứu sử dụng mô hình QVAR để đánh giá mức độ lan truyền rủi ro giữa bất ổn năng lượng và các chỉ số AI với dữ liệu theo tháng từ tháng 6/2018 tới tháng 10/2022. Nghiên cứu chứng minh sự thay đổi theo thời gian của mức độ lan truyền rủi ro khi bùng phát COVID-19 và khủng hoảng Nga-Ukraine. Bất ổn trên thị trường năng lượng chủ yếu nhận cú sốc ròng trong năm 2020 ở tất cả phân vị và ở phân vị dưới 20% và trên 80% trong năm 2022. Kết nối theo cặp cho thấy bất ổn năng lượng đa phần bị chi phối bởi các chỉ số AI như BOTZ, IRBO, ROBT từ 2020 tới đầu năm 2021 và từ cuối 2021 tới cuối 2022. Nói cách khác, AI đóng vai trò quan trọng trong việc ổn định biến động năng lượng trong cả ngắn hạn và dài hạn. Sự mở rộng của AI yêu cầu các chính sách thúc đẩy việc ứng dụng AI một cách có đạo đức, cũng như các can thiệp thị trường dựa trên AI nhằm tăng cường an ninh năng lượng.
Tài liệu tham khảo
Abakah, E.J.A., Tiwari, A.K., Lee, C.C. & Ntow-Gyamfi, M. (2024). Quantile price convergence and spillover effects among Bitcoin, Fintech, and artificial intelligence stocks. International Review of Finance, https://doi.org/10.1111/irfi.12393
Adebayo, T.S., Oladipupo, S.D., Adeshola, I. & Rjoub, H. (2022). Wavelet analysis of impact of renewable energy consumption and technological innovation on CO2 emissions: Evidence from Portugal. Environmental Science and Pollution Research, 29(16), 23887-23904. https://doi.org/10.1007/s11356-021-17708-8
Alonso, C., Kothari, S. & Rehman, S. (2020). How Artificial Intelligence Could Widen the Gap Between Rich and Poor Nations. IMF. https://www.imf.org/en/Blogs/Articles/2020/12/02/blog-how-artificial-intelligence-could-widen-the-gap-between-rich-and-poor-nations
Antonakakis, N., Chatziantoniou, I. & Gabauer, D. (2020). Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions. Journal of Risk and Financial Management, 13(4), 4. https://doi.org/10.3390/jrfm13040084
Arumugam, S.K., Mohammed, A.S., Nagarajan, K., Ramasubramanian, K., Goyal, S.B., Verma, C., Mihaltan, T.C. & Safirescu, C.O. (2022). A novel energy-efficient threshold-based algorithm for wireless body sensor network. Energies, 15(16), 6095. https://doi.org/10.3390/en15166095
Baruník, J. & Křehlík, T. (2018). Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk. Journal of Financial Econometrics, 16(2), 271-296. https://doi.org/10.1093/jjfinec/nby001
Chang, K., Luo, D., Dong, Y. & Xiong, C. (2024). The impact of green finance policy on green innovation performance: Evidence from Chinese heavily polluting enterprises. Journal of Environmental Management, 352, 119961. https://doi.org/10.1016/j.jenvman.2023.119961
Chapman, M., Gazula, Y. & Drukarch, H. (2025). Harnessing Responsible AI in Energy: Practical Considerations for Key Use Cases. Responsible AI. https://www.responsible.ai/harnessing-responsible-ai-in-energy-practical-considerations-for-key-use-cases/
Chatziantoniou, I., Gabauer, D. & Stenfors, A. (2021). Interest rate swaps and the transmission mechanism of monetary policy: A quantile connectedness approach. Economics Letters, 204, 109891. https://doi.org/10.1016/j.econlet.2021.109891
Chen, G., Yang, J., Huang, B., Ma, C., Tian, F., Ge, L., Xia, L. & Li, J. (2023). Toward digital twin of the ocean: From digitalization to cloning. Intelligent Marine Technology and Systems, 1(1), 3. https://doi.org/10.1007/s44295-023-00003-2
Dang, T.H., Nguyen, C.P., Lee, G.S., Nguyen, B.Q. & Le, T.T. (2023). Measuring the energy-related uncertainty index. Energy Economics, 124, 106817. https://doi.org/10.1016/j.eneco.2023.106817
Danish, M.S.S. & Senjyu, T. (2023). Shaping the future of sustainable energy through AI-enabled circular economy policies. Circular Economy, 2(2), 100040. https://doi.org/10.1016/j.cec.2023.100040
Diebold, F.X. & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57-66. https://doi.org/10.1016/j.ijforecast.2011.02.006
Diebold, F.X. & Yılmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182(1), 119-134. https://doi.org/10.1016/j.jeconom.2014.04.012
Elliott, G., Rothenberg, T.J. & Stock, J.H. (1996). Efficient Tests for an Autoregressive Unit Root. Econometrica, 64(4), 813-836. https://doi.org/10.2307/2171846
Fan, Q. & Quiang, C.Z. (2024). Tipping the scales: AI’s dual impact on developing nations. World Bank Blogs. https://blogs.worldbank.org/en/digital-development/tipping-the-scales--ai-s-dual-impact-on-developing-nations
Farghali, M., Osman, A.I., Mohamed, I.M.A., Chen, Z., Chen, L., Ihara, I., Yap, P.S. & Rooney, D.W. (2023). Strategies to save energy in the context of the energy crisis: A review. Environmental Chemistry Letters, 21(4), 2003-2039. https://doi.org/10.1007/s10311-023-01591-5
Fisher, T.J. & Gallagher, C.M. (2012). New Weighted Portmanteau Statistics for Time Series Goodness of Fit Testing. Journal of the American Statistical Association, 107(498), 777-787. https://doi.org/10.1080/01621459.2012.688465
Gajdzik, B., Wolniak, R., Nagaj, R., Žuromskaitė-Nagaj, B. & Grebski, W.W. (2024). The Influence of the Global Energy Crisis on Energy Efficiency: A Comprehensive Analysis. Energies, 17(4), 4. https://doi.org/10.3390/en17040947
Jarque, C.M. & Bera, A.K. (1980). Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters, 6(3), 255-259. https://doi.org/10.1016/0165-1765(80)90024-5
Knöttner, S. & Hofmann, R. (2024). Assessment and conceptualization of industrial energy flexibility supply in mathematical optimization in a competitive and changing environment. Energy Conversion and Management, 304, 118205. https://doi.org/10.1016/j.enconman.2024.118205
Koop, G., Pesaran, M.H. & Potter, S.M. (1996). Impulse response analysis in nonlinear multivariate models. Journal of Econometrics, 74(1), 119-147. https://doi.org/10.1016/0304-4076(95)01753-4
Kumari, A. & Devi, C. (2022). The Impact of FinTech and Blockchain Technologies on Banking and Financial Services. Technology Innovation Management Review, 12(1/2), 22010204. https://doi.org/10.22215/timreview/1481
Liao, Z., Kally, J. & Ru, S. (2024). Probabilistic modeling of renewable energy sources in smart grids: A stochastic optimization perspective. Susta.
Liu, J., Qian, Y., Yang, Y. & Yang, Z. (2022). Can artificial intelligence improve the energy efficiency of manufacturing companies? Evidence from China. International Journal of Environmental Research and Public Health, 19(4), 2091. https://www.mdpi.com/1660-4601/19/4/2091
Ouadah, A., Zemmouchi-Ghomari, L. & Salhi, N. (2022). Selecting an appropriate supervised machine learning algorithm for predictive maintenance. The International Journal of Advanced Manufacturing Technology, 119(7-8), 4277-4301. https://doi.org/10.1007/s00170-021-08551-9
Pesaran, H.H. & Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics Letters, 58(1), 17-29. https://doi.org/10.1016/S0165-1765(97)00214-0
Qing, L., Abbas, J., Najam, H., Ma, X. & Dagestani, A.A. (2024). Investment in renewable energy and green financing and their role in achieving carbon-neutrality and economic sustainability: Insights from Asian region. Renewable Energy, 224, 119830. https://doi.org/10.1016/j.renene.2023.119830
Statista (2023). AI global power consumption forecast 2028. https://www.statista.com/statistics/1536969/ai-electricity-consumption-worldwide/
Stiassny, A. (1996). A spectral decomposition for structural VAR models. Empirical Economics, 21(4), 535-555. https://doi.org/10.1007/BF01180700
Tabares, S., Parida, V. & Chirumalla, K. (2025). Twin transition in industrial organizations: Conceptualization, implementation framework, and research agenda. Technological Forecasting and Social Change, 213, 123995. https://doi.org/10.1016/j.techfore.2025.123995
Tiwari, S., Khan, S., Mohammed, K.S. & Bilan, Y. (2024). Connectedness between artificial intelligence, clean energy, and conventional energy markets: Fresh findings from CQ and WLMC techniques. Gondwana Research, 136, 92-103. https://doi.org/10.1016/j.gr.2024.08.013
Wang, B., Wang, J., Dong, K. & Nepal, R. (2024). How does artificial intelligence affect high-quality energy development? Achieving a clean energy transition society. Energy Policy, 186, 114010. https://doi.org/10.1016/j.enpol.2024.114010
World Economic Forum. (2025). AI’s energy dilemma: Challenges, opportunities, and a path forward. World Economic Forum. https://www.weforum.org/stories/2025/01/ai-energy-dilemma-challenges-opportunities-and-path-forward/
Xiong, X., Masron, T.A. & Gondo, T.W. (2023). Can the green credit policy stimulate green innovation of heavily polluting enterprises in China?. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.1076103.