Ý định tiếp tục sử dụng dịch vụ tủ đồ thông minh của người dùng tại các đô thị lớn ở Việt Nam
Từ khóa:
Tủ đồ thông minh, Ý định tiếp tục sử dụng, Nhận thức sự hữu ích, Sự hài lòng, Sự xác nhậnTóm tắt
Mục tiêu của bài viết là tìm kiếm bằng chứng về các yếu tố ảnh hưởng đến ý định tiếp tục sử dụng tủ đồ thông minh trong giao nhận hàng hoá chặng cuối. Mô hình nghiên cứu được xây dựng dựa trên lý thuyết xác nhận-kỳ vọng. Dữ liệu thu thập từ 193 khách hàng đang sử dụng dịch vụ tủ đồ thông minh. Khung nghiên cứu được kiểm định bằng phương pháp cấu trúc bình phương nhỏ nhất từng phần PLS-SEM. Kết quả nghiên cứu cho thấy vai trò của xác nhận về mức độ đáp ứng của dịch vụ tủ khoá thông minh đối với sự hữu ích, sự hài lòng và ý định tiếp tục sử dụng của người dùng. Đồng thời, nghiên cứu cũng cung cấp bằng chứng về vai trò trung gian một phần của sự hài lòng trong mối quan hệ giữa nhận thức hữu ích và ý định tiếp tục sử dụng dịch vụ của người dùng. Một số hàm ý quản trị được đề xuất nhằm thúc đẩy ý định tiếp tục sử dụng dịch vụ tủ đồ thông minh của khách hàng trong giao nhận hàng chặng cuối trong tương lai.
Tài liệu tham khảo
Barua, Z., Aimin, W., & Hongyi, X. (2018). A perceived reliability-based customer satisfaction model in self-service technology. Service Industries Journal, 38(7–8), 446–466. https://doi.org/10.1080/02642069.2017.1400533
Bhattacherjee, A. (2001). Understanding Information Systems Continuance: An Expectation-Confirmation Model. MIS Quarterly, 25, 351–370. https://doi.org/10.2307/3250921
Bộ Công thương. (2022). Báo cáo Logistics Việt Nam 2022.
Chakrabarty, S., & Green, K. (2016). Understanding service quality and relationship quality in is outsourcing: client orientation & promotion, project management eefectiveness, and the task technology structure fit. Journal of Computer Information Systems , 48(2), 1–15.
Chea, S., & Luo, M. (2008). Post-Adoption Behaviors of E-Service Customers: The Interplay of Cognition and Emotion. International Journal of Electronic Commerce - INT J ELECTRON COMMER, 12, 29–56. https://doi.org/10.2753/JEC1086-4415120303
Cohen, J. (1989). Statistical Power Analysis for the Behavioral Sciences Second Edition.
Davis, F. D. (1993). User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. International Journal of Man-Machine Studies, 38(3), 475–487. https://doi.org/https://doi.org/10.1006/imms.1993.1022
Ettis, S. A., & El Abidine, A. B. Z. (2017). Consumer Behavior in M-Commerce (pp. 264–287). https://doi.org/10.4018/978-1-5225-2469-4.ch015
Featherman, M. S., Miyazaki, A. D., & Sprott, D. E. (2010). Reducing online privacy risk to facilitate e-service adoption: The influence of perceived ease of use and corporate credibility. Journal of Services Marketing, 24(3), 219–229. https://doi.org/10.1108/08876041011040622
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
Hair, J., Sarstedt, M., Hopkins, L., & G. Kuppelwieser, V. (2014). Partial least squares structural equation modeling (PLS-SEM). European Business Review, 26(2), 106–121. https://doi.org/10.1108/EBR-10-2013-0128
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8
Hossain, M. A., & Quaddus, M. (2012). Expectation–Confirmation Theory in Information System Research: A Review and Analysis (pp. 441–469). https://doi.org/10.1007/978-1-4419-6108-2_21
Hsiao, C.-H., Chang, J.-J., & Tang, K.-Y. (2016). Exploring the influential factors in continuance usage of mobile social Apps: Satisfaction, habit, and customer value perspectives. Telematics and Informatics, 33(2), 342–355. https://doi.org/https://doi.org/10.1016/j.tele.2015.08.014
Huong, T. T., & Thiet, B. N. (2020). Smart locker- A sustainable urban delivery solution: Benefits and challenges in implementing in Vietnam. 12th NEU-KKU International Conference Socio-Economic And Environmental Issues In Development, 1123–1135.
Islam, N., Mäntymäki, M., & Bhattacherjee, A. (2017). Towards a Decomposed Expectation-Confirmation Model of IT Continuance: The Role of Usability. Communications of the Association for Information Systems, 40, 502–523. https://doi.org/10.17705/1CAIS.04023
Iwan, S., Kijewska, K., & Lemke, J. (2016). Analysis of Parcel Lockers’ Efficiency as the Last Mile Delivery Solution - The Results of the Research in Poland. Transportation Research Procedia, 12, 644–655. https://doi.org/10.1016/j.trpro.2016.02.018
Kim, M. J., Bonn, M., & Hall, C. (2021). Traveler Biosecurity Behavior during the COVID-19 Pandemic: Effects of Intervention, Resilience, and Sustainable Development Goals. Journal of Travel Research, Accepted. https://doi.org/10.1177/00472875211034582
Kim, S. H., Bae, J. H., & Jeon, H. M. (2019). Continuous intention on accommodation apps: Integrated value-based adoption and expectation-confirmation model analysis. Sustainability (Switzerland), 11(6). https://doi.org/10.3390/su11061578
Lai, P. L., Jang, H., Fang, M., & Peng, K. (2022). Determinants of customer satisfaction with parcel locker services in last-mile logistics. Asian Journal of Shipping and Logistics, 38(1), 25–30. https://doi.org/10.1016/j.ajsl.2021.11.002
Le, T. T., Pham, H. M., Chu, N. H., Nguyen, D. K., & Ngo, H. M. (2020). Factors Affecting Users’ Continuance Intention towards Mobile Banking In Vietnam. In American Journal of Multidisciplinary Research & Development (AJMRD (Vol. 2, Issue 4). www.ajmrd.com
Lin, T.-C., Huang, S.-L., & Hsu, C.-J. (2015). A dual-factor model of loyalty to IT product – The case of smartphones. International Journal of Information Management, 35. https://doi.org/10.1016/j.ijinfomgt.2015.01.001
Liu, W., Zhang, J., Wei, S., & Wang, D. (2021). Factors influencing organisational efficiency in a smart-logistics ecological chain under e-commerce platform leadership. International Journal of Logistics Research and Applications, 24(4), 364–391. https://doi.org/10.1080/13675567.2020.1758643
McKinnon, A. C., & Tallam, D. (2003). Unattended delivery to the home: An assessment of the security implications. International Journal of Retail & Distribution Management, 31(1), 30–41. https://doi.org/10.1108/09590550310457827
Mentzer, J. T., Flint, D. J., Tomas, G., & Hult, M. (2001). Logistics Service Quality as a Segment-Customized Process. In Journal of Marketing (Vol. 82).
Oliver, R. L. (1999). Whence Consumer Loyalty? Journal of Marketing, 63, 33–44. https://doi.org/10.2307/1252099
Olsson, J., Hellström, D., & Vakulenko, Y. (2023). Customer experience dimensions in last-mile delivery: an empirical study on unattended home delivery. International Journal of Physical Distribution and Logistics Management, 53(2), 184–205. https://doi.org/10.1108/IJPDLM-12-2021-0517
Olubusola, A. O. (2015). User satisfaction in mobile applications. https://api.semanticscholar.org/CorpusID:202725043
Pham, H. T., & Lee, H. (2019). Analyzing the Costs and Benefits of Installing Unmanned Parcel Lockers: Focusing on Residential Complexes in Korea. Journal of International Logistics and Trade, 17(2), 43–54. https://doi.org/10.24006/jilt.2019.17.2.002
Quan, N. H., Binh, N. T., & Ly, B. T. (2022). Impact of smart locker use on customer satisfaction of online shoppers in Vietnam. Humanities and Social Sciences Communications, 9(1). https://doi.org/10.1057/s41599-022-01428-6
Roy, S. K., Shekhar, V., Lassar, W. M., & Chen, T. (2018). Customer engagement behaviors: The role of service convenience, fairness and quality. Journal of Retailing and Consumer Services, 44, 293–304. https://doi.org/10.1016/j.jretconser.2018.07.018
Sonnenwald, D. H., Maglaughlin, K. L., & Whitton, M. C. (2020). Using Innovation Diffusion Theory to Guide Collaboration Technology Evaluation: Work in Progress.
Thị Diệu Quỳnh, T., Thiên Phú, T., Đức Anh, T., Quỳnh Trang, N., & Hương Giang, H. (2023). Nghiên cứu tổng quan về điểm lấy hàng trong giao hàng chặng cuối. In FTU Working Paper Series (Vol. 1, Issue 4).
Tsai, Y. Te, & Tiwasing, P. (2021). Customers’ intention to adopt smart lockers in last-mile delivery service: A multi-theory perspective. Journal of Retailing and Consumer Services, 61. https://doi.org/10.1016/j.jretconser.2021.102514
Vakulenko, Y., Shams, P., Hellström, D., & Hjort, K. (2019). Online retail experience and customer satisfaction: the mediating role of last mile delivery. International Review of Retail, Distribution and Consumer Research, 29(3), 306–320. https://doi.org/10.1080/09593969.2019.1598466
Van Duin, J. H. R., De Goffau, W., Wiegmans, B., Tavasszy, L. A., & Saes, M. (2016). Improving Home Delivery Efficiency by Using Principles of Address Intelligence for B2C Deliveries. Transportation Research Procedia, 12, 14–25. https://doi.org/10.1016/j.trpro.2016.02.006
Wang, X., Yuen, K. F., Wong, Y. D., & Teo, C. C. (2019). Consumer participation in last-mile logistics service: an investigation on cognitions and affects. International Journal of Physical Distribution and Logistics Management, 49(2), 217–238. https://doi.org/10.1108/IJPDLM-12-2017-0372
Wetzels, M., & Odekerken, G. (2009). Using PLS Path Modeling for Assessing Hierarchical Construct Models: Guidelines and Empirical Illustration. Management Information Systems Quarterly - MISQ, 33. https://doi.org/10.2307/20650284
Wu, X., Chen, Q., Sheng, L., & Wang, Y. (2009). A conceptual model of m-commerce customers’ continuance intention based on the customers’ perceived value. International Journal of Mobile Learning and Organisation, 3. https://doi.org/10.1504/IJMLO.2009.026311
Xie, W., Chen, C., & Sithipolvanichgul, J. (2022). Understanding e-commerce customer behaviors to use drone delivery services: A privacy calculus view. Cogent Business and Management, 9(1). https://doi.org/10.1080/23311975.2022.2102791
Xu, H., Dinev, T., Smith, J., & Hart, P. (2011). Information Privacy Concerns: Linking Individual Perceptions with Institutional Privacy Assurances. In Journal of the Association for Information Systems (Vol. 12, Issue 12).
Yi, M. Y., & Hwang, Y. (2003). Predicting the use of web-based information systems: Self-efficacy, enjoyment, learning goal orientation, and the technology acceptance model. International Journal of Human Computer Studies, 59(4), 431–449. https://doi.org/10.1016/S1071-5819(03)00114-9
Yuen, K. F., Wang, X., Ma, F., & Wong, Y. D. (2019). The determinants of customers’ intention to use smart lockers for last-mile deliveries. Journal of Retailing and Consumer Services, 49, 316–326. https://doi.org/10.1016/j.jretconser.2019.03.022