Sử dụng phương pháp phân tích thứ bậc mờ (FAHP) để xếp hạng các nhân tố ảnh hưởng đến ứng dụng công nghệ điện toán đám mây tại các ngân hàng Việt Nam
Từ khóa:
Công nghệ điện toán đám mây trong ngân hàng, xếp hạng nhân tố ảnh hưởng, phương pháp phân tích thứ bậc mờ (FAHP), khung lý thuyết TOEHTóm tắt
Công nghệ điện toán đám mây (Cloud computing) được ứng dụng rất nhiều trong lĩnh vực ngân hàng. Nhờ đó, các ngân hàng có thể tăng tốc độ xử lý và khả năng xử lý dữ liệu trong công việc. Mục tiêu của bài báo này là xác định các nhân tố ảnh hưởng đến việc áp dụng công nghệ điện toán đám mây dựa trên khung lý thuyết TOEH (Technology - Organization - Environment - Human) và đánh giá mức độ quan trọng của nhân tố này trong lĩnh vực ngân hàng bằng cách sử dụng phương pháp phân tích thứ bậc mờ (Fuzzy Analytic Hierarchy Process - FAHP). Kết quả nghiên cứu chỉ ra rằng trong 15 nhân tố thì các nhân tố sự tin tưởng của khách hàng, môi trường pháp lý, an toàn và bảo mật thông tin là những nhân tố quan trọng nhất để áp dụng công nghệ điện toán đám mây trong ngân hàng. Các thảo luận và đề xuất cũng được trình bày. Kết quả của nghiên cứu là tài liệu tham khảo cho các nhà cung cấp dịch vụ công nghệ thông tin, các nhà quản lý và các cơ quan chính phủ trong việc thúc đẩy sử dụng các công nghệ tiên tiến trong lĩnh vực ngân hàng tại Việt Nam.
Tài liệu tham khảo
Aboelmaged, M. G. (2014), ‘Predicting e-readiness at firm-level: An analysis of technological, organizational and environmental (TOE) effects on e-maintenance readiness in manufacturing firms’, International Journal of Information Management, 34(5), 639–651.
Agrawal, A., Gans, J., & Goldfarb, A. (2019), ‘Economic policy for artificial intelligence’, Innovation Policy and the Economy, 19(1), 139–159.
Alhammadi, A., Stanier, C., & Eardley, A. (2015), ‘The determinants of cloud computing adoption in Saudi Arabia’, Proceedings of 2nd International Conference on Computer Science and Engineering, Dubai, 55–67.
Azadegan, A., & Teich, J. (2010), ‘Effective benchmarking of innovation adoptions: A theoretical framework for e‐procurement technologies’, Benchmarking: An International Journal, 17(4), 472–490.
Baker, J. (2012), ‘The technology–organization–environment framework’, Information Systems Theory: Explaining and Predicting Our Digital Society, 1, 231–245.
Chatterjee, S., Ghosh, S. K., Chaudhuri, R., & Chaudhuri, S. (2021), ‘Adoption of AI-integrated CRM system by Indian industry: from security and privacy perspective’, Information & Computer Security, 29(1), 1–24.
Chehrehpak, M., Alizadeh, A., & Nazari-Shirkouhi, S. (2018), ‘An empirical study on factors influencing technology transfer using structural equation modelling’, International Journal of Productivity and Quality Management, 23(3), 273–288.
Chittipaka, V., Kumar, S., Sivarajah, U., Bowden, J. L.-H., & Baral, M. M. (2022), ‘Blockchain Technology for Supply Chains operating in emerging markets: an empirical examination of technology-organization-environment (TOE) framework’, Annals of Operations Research, 327(1), 465–492.
Choi, Y. (2021), ‘A study of employee acceptance of artificial intelligence technology’, European Journal of Management and Business Economics, 30(3), 318–330.
Davies, M. A. P. (1994), ‘A multicriteria decision model application for managing group decisions’, Journal of the Operational Research Society, 45(1), 47–58.
Dora, M., Kumar, A., Mangla, S. K., Pant, A., & Kamal, M. M. (2022), ‘Critical success factors influencing artificial intelligence adoption in food supply chains’, International Journal of Production Research, 60(14), 4621–4640.
Duan, X., Deng, H., & Corbitt, B. (2010), ‘A critical analysis of e-market adoption in Australian small and medium sized enterprises’, Proceedings of The Pacific Asia Conference on Information Systems (PACIS), Taipei, Taiwan, 1719-1726.
El Khatib, M. M., Al-Nakeeb, A., & Ahmed, G. (2019), ‘Integration of cloud computing with artificial intelligence and Its impact on telecom sector—A case study’, IBusiness, 11(01), 1.
Hernandez-de-Menendez, M., Morales-Menendez, R., Escobar, C. A., & McGovern, M. (2020), ‘Competencies for industry 4.0’, International Journal on Interactive Design and Manufacturing (IJIDeM), 14, 1511–1524.
Huang, F., & Teo, T. (2020), ‘Influence of teacher-perceived organisational culture and school policy on Chinese teachers’ intention to use technology: An extension of technology acceptance model’, Educational Technology Research and Development, 68(3), 1547–1567.
Hwang, C.-L., & Lin, M.-J. (2012), Group decision making under multiple criteria: methods and applications (Vol. 281), Springer Science & Business Media.
Janssen, M., Weerakkody, V., Ismagilova, E., Sivarajah, U., & Irani, Z. (2020), ‘A framework for analysing blockchain technology adoption: Integrating institutional, market and technical factors’, International Journal of Information Management, 50, 302–309.
Kruse, L., Wunderlich, N., & Beck, R. (2019), Artificial intelligence for the financial services industry: What challenges organizations to succeed, Proceedings of the 52nd Hawaii International Conference on System Sciences, 6408-6417.
Lo, F.-Y., & Fu, P.-H. (2016), ‘The interaction of chief executive officer and top management team on organization performance’, Journal of Business Research, 69(6), 2182–2186.
Miller, G. A. (1956), ‘The magical number seven, plus or minus two: some limits on our capacity for processing information’, Psychological Review, https://doi.org/10.1037/h0043158
Oliveira, T., Thomas, M., & Espadanal, M. (2014), ‘Assessing the determinants of cloud computing adoption: An analysis of the manufacturing and services sectors’, Information & Management, 51(5), 497–510.
Patani, S., Kadam, S., & Jain, P. V. (2014), ‘Cloud computing in the banking sector: a survey’, International Journal of Advanced Research in Computer and Communication Engineering, 3(2), 5640–5643.
Pumplun, L., Tauchert, C., & Heidt, M. (2019). ‘A new organizational chassis for artificial intelligence-exploring organizational readiness factors’, European Conference on Information Systems (ECIS) 2019 Proceedings, Stockholm-Uppsala, Sweden, 1-15.
Ransbotham, S., Kiron, D., Gerbert, P., & Reeves, M. (2017), ‘Reshaping business with artificial intelligence: Closing the gap between ambition and action’, MIT Sloan Management Review, 59(1), 1-17.
Saaty, T. L. (1980), The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation, McGraw-Hill International Book, New York, USA.
Salah, O. H., Yusof, Z. M., & Mohamed, H. (2021), ‘The determinant factors for the adoption of CRM in the Palestinian SMEs: The moderating effect of firm size’, PloS One, 16(3), e0243355.
Spanaki, K., Karafili, E., Sivarajah, U., Despoudi, S., & Irani, Z. (2022), ‘Artificial intelligence and food security: swarm intelligence of AgriTech drones for smart AgriFood operations’, Production Planning & Control, 33(16), 1498–1516.
Sulaiman, H., & Wickramasinghe, N. (2014), ‘Assimilating healthcare information systems in a Malaysian hospital’, Communications of the Association for Information Systems, 34(1), 77.
Tussyadiah, I. (2020), ‘A review of research into automation in tourism: Launching the Annals of Tourism Research Curated Collection on Artificial Intelligence and Robotics in Tourism’, Annals of Tourism Research, 81, 102883.
Vinoth, S., Vemula, H. L., Haralayya, B., Mamgain, P., Hasan, M. F., & Naved, M. (2022), ‘Application of cloud computing in banking and e-commerce and related security threats’, Materials Today: Proceedings, 51, 2172–2175.
Yang, Z., Kankanhalli, A., Ng, B.-Y., & Lim, J. T. Y. (2013), ‘Analyzing the enabling factors for the organizational decision to adopt healthcare information systems’, Decision Support Systems, 55(3), 764–776.
Yildirim, H., & Ali-Eldin, A. M. T. (2019), ‘A model for predicting user intention to use wearable IoT devices at the workplace’, Journal of King Saud University-Computer and Information Sciences, 31(4), 497–505.
Zadeh, L. A. (1975), ‘The concept of a linguistic variable and its application to approximate reasoning-I’, Information Sciences, https://doi.org/10.1016/0020-0255(75)90036-5