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Tóm tắt:
Nghiên cứu sử dụng mô hình QVAR để đánh giá mức độ lan truyền rủi ro giữa bất ổn năng 
lượng và các chỉ số AI với dữ liệu theo tháng từ tháng 6/2018 tới tháng 10/2022. Nghiên cứu 
chứng minh sự thay đổi theo thời gian của mức độ lan truyền rủi ro khi bùng phát COVID-19 
và khủng hoảng Nga-Ukraine. Bất ổn trên thị trường năng lượng chủ yếu nhận cú sốc ròng 
trong năm 2020 ở tất cả phân vị và ở phân vị dưới 20% và trên 80% trong năm 2022. Kết nối 
theo cặp cho thấy bất ổn năng lượng đa phần bị chi phối bởi các chỉ số AI như BOTZ, IRBO, 
ROBT từ 2020 tới đầu năm 2021 và từ cuối 2021 tới cuối 2022. Nói cách khác, AI đóng vai 
trò quan trọng trong việc ổn định biến động năng lượng trong cả ngắn hạn và dài hạn. Sự mở 
rộng của AI yêu cầu các chính sách thúc đẩy việc ứng dụng AI một cách có đạo đức, cũng như 
các can thiệp thị trường dựa trên AI nhằm tăng cường an ninh năng lượng.
Từ khóa: Trí tuệ nhân tạo, biến động thị trường năng lượng tái tạo, biến động toàn cầu, QVAR.
Mã JEL: C22, H1.

The spillover effects of Artificial Intelligence on energy market instability: Evidence 
from a QVAR model
Abstract: 
This study employs a Quantile Vector Autoregressive (QVAR) model to assess the degree of risk 
spillover between energy uncertainty and Artificial Intelligence (AI) indices, using monthly data 
from June 2018 to October 2022. The research demonstrates the time-varying nature of risk 
spillovers, particularly during the onset of the COVID-19 pandemic and the Russia-Ukraine 
crisis. The results indicate that the energy market was primarily a net recipient of shocks in 
2020 across all quantiles, and again in 2022 at the extreme lower (below 20%) and upper 
(above 80%) quantiles. Meanwhile, energy uncertainty acted as a net transmitter of shocks 
across all quantiles in 2019 and was a strong net transmitter in 2021 in the upper quantiles 
(above 60%). Pairwise connectedness analysis reveals that during the crisis periods—from 
2020 to early 2021 and from late 2021 to late 2022—energy uncertainty was predominantly 
influenced by AI indices such as BOTZ, IRBO, and ROBT. AI played a significant role in 
stabilizing energy market volatility, resource optimization, and price forecasting in both the 
short and long term. The expansion of AI necessitates policies promoting ethical AI adoption 
and AI-driven market interventions to enhance energy security.
Keywords: Artificial Intelligence, energy market instability, global uncertainty, QVAR.
JEL code: C22, H1.
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1. Giới thiệu
Khi các công nghệ mới, đặc biệt là trí tuệ nhân tạo (AI), ngày càng mở rộng ảnh hưởng và làm thay đổi 

sâu sắc cấu trúc của nhiều ngành, trong đó có thị trường năng lượng, việc xem xét lại các mô hình tăng 
trưởng truyền thống và cách thức vận hành của hệ thống năng lượng trở nên cần thiết hơn bao giờ hết. Mô 
hình tăng trưởng kinh tế truyền thống chủ yếu dựa vào gia tăng tiêu thụ năng lượng có nhiều vấn đề về 
tính bền vững và công bằng xã hội (Adebayo & cộng sự, 2022). Việc tiếp tục mở rộng tiêu thụ năng lượng 
không phải giải pháp lâu dài, còn cách quản lý hệ thống năng lượng hiện nay lại thiếu linh hoạt. Trước tình 
hình đó, AI và học máy (ML) nổi lên không chỉ hỗ trợ tối ưu hóa mà còn là tác nhân có thể tái cấu trúc thị 
trường năng lượng. Thay vì chỉ cải thiện hiệu suất của từng thiết bị, AI giúp tối ưu hóa toàn bộ hệ thống. Từ 
góc độ kinh tế và tài chính, AI mang đến một phương thức tiếp cận mới, giúp hóa giải thế lưỡng nan năng 
lượng - giữa an ninh năng lượng, chi phí hợp lý và tính bền vững - từ đó định hình lại cấu trúc kinh tế năng 
lượng trong tương lai.

Từ đó, nghiên cứu đánh giá tác động hai chiều giữa AI và năng lượng khi chuyển đổi kép gồm số hóa và 
xanh hóa. AI thúc đẩy mạnh mẽ chuyển đổi năng lượng bằng cách nâng cao hiệu quả tích hợp. Tuy nhiên, 
AI cũng đặt ra thách thức đáng kể khi quá trình đào tạo các mô hình đòi hỏi lượng năng lượng rất lớn, qua 
đó làm gia tăng nguy cơ phát thải carbon nếu nguồn điện vẫn phụ thuộc vào nhiên liệu hóa thạch (Abakah & 
cộng sự, 2024; Qing & cộng sự, 2024; Chang & cộng sự, 2024; Xiong & cộng sự, 2023). Nghịch lý này yêu 
cầu các phân tích thực chứng cho việc thiết kế chính sách, hướng đến việc hình thành một nền tảng tương 
hỗ, bảo đảm AI và năng lượng tái tạo có thể cùng tiến bộ một cách bền vững (Xiong & cộng sự, 2023).

Những nghiên cứu mới đây đã phân tích mức độ tác động của AI và ML lên lĩnh vực môi trường và 
thị trường năng lượng. Đáng chú ý, Tiwari & cộng sự (2024) đã phân tích mối quan hệ hai chiều giữa thị 
trường AI và thị trường năng lượng bằng các phương pháp Cross-Quantilogram và Wavelet Local Multiple 
Correlations. Mặc dù vậy, bằng chứng thực nghiệm về cách mức độ ứng dụng AI hỗ trợ các nền kinh tế vượt 
qua bất ổn năng lượng vẫn còn rất hạn chế. Đặc biệt, phần lớn tài liệu hiện hành chỉ mới mô tả mối quan hệ 
tổng quát, mà chưa phân tách được tác động ngắn hạn và dài hạn. Đồng thời, cơ chế truyền dẫn thông qua 
đó AI có thể làm giảm, khuếch đại hoặc chuyển hướng các cú sốc năng lượng cũng chưa được phân tích một 
cách hệ thống. Khoảng trống này cho thấy nhu cầu cấp thiết giải thích đầy đủ và toàn diện động lực tương 
tác giữa AI và các cuộc khủng hoảng năng lượng.

Từ những khoảng trống trên, nghiên cứu của chúng tôi có ít nhất ba đóng góp đáng kể. Thứ nhất, nghiên 
cứu tiên phong khám phá mối quan hệ hai chiều giữa AI và sự bất ổn phát sinh trên thị trường năng lượng. 
Thứ hai, nghiên cứu ứng dụng phương pháp hiệu quả để đánh giá khả năng truyền sốc giữa các chỉ số với 
mô hình tự hồi quy phân vị (QVAR) làm rõ mối liên hệ giữa sự bất ổn của thị trường năng lượng và AI. Thứ 
ba, nghiên cứu tiên phong trong việc phân tích ảnh hưởng của các sự kiện bất ngờ đến mối tương quan giữa 
biến động do AI gây ra và sự bất định trong lĩnh vực năng lượng. Mô hình QVAR cung cấp cái nhìn đa chiều 
về mối quan hệ giữa AI và sự bất định trên thị trường năng lượng bằng cách xác định các con đường mà các 
cú sốc của AI và khủng hoảng năng lượng được truyền tải. Cách tiếp cận này đồng thời phân tích được cả 
tác động ngắn hạn lẫn dài hạn, từ đó mang lại cơ sở phục vụ quá trình hoạch định chính sách.

Các phần còn lại trong nghiên cứu được sắp xếp theo thứ tự sau: Phần 2 thảo luận về các nghiên cứu trước. 
Phần 3 chứa thông tin về dữ liệu, nguồn lực và phương pháp luận. Phần 4 chứa số liệu thống kê và nhận xét. 
Phần 5 tóm tắt kết luận và đưa ra các đề xuất chính sách.

2. Tổng quan nghiên cứu
2.1. Nền tảng lý thuyết về ứng dụng AI trong lĩnh vực năng lượng
Liao & cộng sự (2024) khẳng định rằng học máy (ML) và AI thúc đẩy giám sát, quản lý và vận hành 

hiện tại; tích hợp năng lượng tái tạo, quản lý sự không chắc chắn, bất ổn, điều chỉnh hoàn cảnh và giám sát 
các khía cạnh mới của lưới điện thông minh đều phụ thuộc vào hệ thống điện. Mặc dù vậy, khi áp dụng ML 
nhằm mục đích linh hoạt và tối ưu hóa, các chiến lược mới cũng cần được hợp nhất vào cơ sở hạ tầng sẵn có. 
Điều này đòi hỏi việc nâng cấp đồng bộ cả phần cứng lẫn phần mềm để đảm bảo tính tương thích và hiệu quả 
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vận hành. Hơn nữa, năng lực quản trị dữ liệu và an ninh mạng cũng phải được tăng cường nhằm hỗ trợ triển 
khai ML và AI một cách an toàn và bền vững trong toàn bộ hệ thống năng lượng (Wang & cộng sự, 2024).

Trong bối cảnh thế giới ngày càng dựa vào các công nghệ số để xử lý những thách thức ngày càng phức 
tạp, việc triển khai AI đặc biệt trong ngành năng lượng phụ thuộc nhiều vào tác động bên ngoài. Vì vậy, 
cần hiểu rõ các điều kiện để áp dụng AI vừa đạt được hiệu quả và bền vững (Wang & cộng sự, 2024). Cùng 
với đó, việc tích hợp AI với cơ sở hạ tầng hiện có, thường đòi hỏi tính khả dụng của dữ liệu cao và các tiêu 
chuẩn mới là rào cản khi vừa duy trì kiến thức của con người vừa tận dụng tối đa AI. Hơn nữa, việc quản 
lý hệ thống năng lượng đòi hỏi mức độ linh hoạt trung bình, có thể bao gồm việc bổ sung nguồn cung cấp 
năng lượng mới hoặc điều chỉnh theo nhu cầu thay đổi (Knöttner & Hofmann, 2024). Dù các yếu tố như 
đánh giá hiệu suất và năng lực tương tác với người dùng chưa được quan tâm đầy đủ trong nhiều nghiên 
cứu, đây vẫn là những thành tố then chốt để xây dựng các hệ thống AI hoạt động tin cậy, an toàn và có tính 
bền vững trong dài hạn.

2.2. Ứng dụng AI hướng tới tăng cường sử dụng hiệu quả năng lượng
Câu chuyện về an ninh và bền vững năng lượng đã trở thành tâm điểm lo ngại ở quy mô toàn cầu (Gajdzik 

& cộng sự, 2024). Việc gia tăng dân số thế giới và kinh tế toàn cầu liên tục mở rộng đã tạo áp lực lớn lên nhu 
cầu tiêu thụ năng lượng (Gajdzik & cộng sự, 2024). Song song với đó, nhiều nước ngày càng coi trọng mục 
tiêu phát triển xanh và tối ưu hóa hiệu quả sử dụng năng lượng như những ưu tiên mang tính chiến lược và 
cấp bách. Việc thúc đẩy tăng trưởng kinh tế đi đôi với giảm phát thải, sử dụng năng lượng tiết kiệm và bền 
vững được xem là điều kiện then chốt để đảm bảo an ninh năng lượng, bảo vệ môi trường và đáp ứng các 
cam kết quốc tế về khí hậu (Chen & cộng sự, 2023). Đồng thời, việc thực hiện đồng bộ các mục tiêu này còn 
góp phần nâng cao chất lượng tăng trưởng, giảm chi phí môi trường và tạo nền tảng cho sự phát triển kinh 
tế – xã hội hài hòa trong dài hạn (Gajdzik & cộng sự, 2024).

Trước những thách thức này, AI dần khẳng định vị thế như một công cụ then chốt trong lĩnh vực năng 
lượng, giúp loại bỏ những rào cản cản trở hiệu quả vận hành, qua đó hỗ trợ tiến trình tăng trưởng dài hạn 
(Farghali & cộng sự, 2023). Một tác động tích cực khác của AI là khả năng nâng cao chất lượng ra quyết 
định chiến lược trong quản lý năng lượng thông qua phân tích dữ liệu quy mô lớn theo thời gian thực. Bằng 
việc phát hiện sớm các điểm bất thường, dự báo chính xác rủi ro và mô phỏng nhiều kịch bản thị trường khác 
nhau, AI hỗ trợ các nhà quản lý đưa ra các quyết định kịp thời và hiệu quả hơn (Gajdzik & cộng sự, 2024). 
AI mang đến một cách tiếp cận đa chiều, từ dự báo nhu cầu, tối ưu hóa sản xuất và tiêu thụ, đến triển khai 
các hệ thống điều khiển thông minh (Danish & Senjyu, 2023). Những đổi mới này mang lại nhiều lợi ích cụ 
thể, từ việc cắt giảm chi phí năng lượng đến giảm thiểu ảnh hưởng môi trường, qua đó thúc đẩy phát triển 
bền vững và tiến bộ xã hội (Danish & Senjyu, 2023). Mối liên hệ giữa AI và hiệu quả năng lượng ngày càng 
nổi bật và được chú ý rộng rãi bởi cả cộng đồng nghiên cứu và các doanh nghiệp trong ngành (Kumari & 
Devi, 2022). Tuy nhiên, như   Ouadah & cộng sự (2022) và Arumugam & cộng sự (2022) nhấn mạnh việc 
triển khai AI hiệu quả trong lĩnh vực năng lượng đòi hỏi dữ liệu đầu vào chính xác và lựa chọn đúng thuật 
toán. Điều này phản ánh rằng việc ứng dụng AI nhằm nâng cao hiệu quả năng lượng vẫn đang chịu nhiều 
áp lực và thách thức đáng kể.

2.3. Khoảng trống nghiên cứu và đóng góp của nghiên cứu
Mặc dù các nghiên cứu gần đây đã bước đầu làm rõ vai trò của AI trong lĩnh vực môi trường và thị trường 

năng lượng, bằng chứng thực nghiệm về khả năng AI giúp các nền kinh tế ứng phó với bất ổn năng lượng 
vẫn còn hạn chế. Đặc biệt, tài liệu hiện nay chưa phân tách rõ tác động ngắn hạn – dài hạn cũng như các cơ 
chế truyền dẫn cú sốc năng lượng liên quan đến AI. Khoảng trống này cho thấy nhu cầu nghiên cứu sâu hơn 
về động lực tương tác giữa AI và các cuộc khủng hoảng năng lượng.

Xuất phát từ các khoảng trống nghiên cứu đã được chỉ ra, nghiên cứu này đóng góp ít nhất ba điểm mới 
quan trọng. Thứ nhất, nghiên cứu tiên phong xem xét mối quan hệ hai chiều giữa AI và mức độ bất ổn trên 
thị trường năng lượng. Thứ hai, nghiên cứu áp dụng mô hình tự hồi quy phân vị (QVAR) như một công cụ 
hiệu quả để đánh giá cơ chế truyền dẫn cú sốc giữa các chỉ số, qua đó làm rõ mối liên hệ giữa sự bất định 
của thị trường năng lượng và AI. Thứ ba, nghiên cứu là một trong những công trình đầu tiên phân tích tác 
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động của các sự kiện bất ngờ đối với mối tương quan giữa biến động do AI gây ra và mức độ bất định trong 
lĩnh vực năng lượng.

Thông qua mô hình QVAR, nghiên cứu cung cấp một góc nhìn đa chiều về mối quan hệ giữa AI và sự bất 
định trên thị trường năng lượng bằng cách xác định các kênh truyền dẫn của cú sốc AI và các cuộc khủng 
hoảng năng lượng. Cách tiếp cận này cho phép phân tích đồng thời cả tác động ngắn hạn và dài hạn, từ đó 
tạo nền tảng khoa học hữu ích cho quá trình hoạch định chính sách.

Do đó, nhóm nghiên cứu đề xuất giả thuyết sau:
H1: Việc triển khai AI trong lĩnh vực năng lượng làm giảm khủng hoảng năng lượng và sự bất ổn trên thị 

trường năng lượng.  
3. Phương pháp nghiên cứu
3.1. Dữ liệu
Nghiên cứu này sử dụng các chỉ số Bất ổn về năng lượng (EUI) của các quốc gia theo tháng kết hợp giữa 

bất ổn kinh tế và các chỉ báo liên quan đến năng lượng (Dang & cộng sự, 2023). Lĩnh vực trí tuệ nhân tạo 
gồm các chỉ số như Global X Robotics & Artificial Intelligence (BOTZ), iShares Robotics and Artificial 
Intelligence Multisector (IRBO) và First Trust Nasdaq Artificial Intelligence and Robotics (ROBT) để phân 
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trong đó làm rõ tác động của chuỗi jth đối với phương sai của sự không chính xác dự đoán của chuỗi thứ 

i tại chân trời Ŭ. Các hàng sau đó chuẩn hóa tổng của chúng thậm chí không bằng một mà là . Tiếp theo, 
danh tính bằng cách tiêu chuẩn hóa sau đó được chuẩn hóa:   
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Trong giai đoạn sau, tất cả các biện pháp kết nối có thể được tính toán. Đầu tiên, nhóm tác giả tính toán 
kết nối cặp mạng như sau:
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Tùy thuộc vào kết nối định hướng của chúng, cú sốc 𝑖𝑖 đối với một chỉ báo sẽ có tác động đến tất cả các chỉ 
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Khi một chỉ báo a nhận được một cú sốc 𝑖𝑖, tổng kết nối định hướng FROM các chỉ số khác 𝑗𝑗 được mô tả 
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Vì đó là sự khác biệt giữa TO và FROM các hệ thống khác, tổng kết nối định hướng ròng có thể được coi 
là chuỗi ảnh hưởng có trên hệ thống đang được xem xét.

                                    

7 
 

 

(7) 

Vì đó là sự khác biệt giữa TO và FROM các hệ thống khác, tổng kết nối định hướng ròng có thể được coi 
là chuỗi ảnh hưởng 𝑖𝑖𝑖có trên hệ thống đang được xem xét. 

 

𝑁𝑁𝑁𝑁𝑁𝑁���� � 𝑁𝑁����� � ��������  (8) 

Nếu 𝑁𝑁𝑁𝑁𝑁𝑁� > 0 (𝑁𝑁𝑁𝑁𝑁𝑁� < 0), mọi biến có ảnh hưởng đáng kể hơn (ít hơn) đến tất cả các biến khác. Do đó, 
biến đó là biến truyền sốc ròng (biến nhận sốc ròng). Tổng chỉ số kết nối (TCI) đo lường mức độ kết nối 
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Do đó, số liệu cho thấy một cú sốc trong một chuỗi ảnh hưởng đến tất cả các chuỗi khác như thế nào - rủi 
ro của thị trường tăng theo giá trị của nó và ngược lại. Trọng tâm của nghiên cứu này là đánh giá kết nối 
miền thời gian. Vùng tần số cũng đang được đánh giá về tính kết nối. Nghiên cứu có thể nghiên cứu kết nối 
trong dải tần số thông qua phương pháp phân hủy quang phổ được phát triển bởi Stiassny (1996). Hàm 
được khám phá theo cách sau: 

 

 𝖅𝖅������ � 𝑖∑ 𝑒𝑒�����ŭ�� 𝖅𝖅ŭ, trong đó 𝑖𝑖 � 𝑖√�� và 𝜔𝜔 là tần số tương ứng với mật độ quang phổ 𝑥𝑥�  của tần 
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Tần số GFEVD được tính bằng cách kết hợp mật độ quang phổ và GFEVD. GFEVD cần được chuẩn hóa 
trong miền tần số giống như trong miền thời gian. Công thức sau đây có thể được sử dụng để thực hiện điều 
này: 
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Nếu NETi  > 0 (NETi < 0), mọi biến có ảnh hưởng đáng kể hơn (ít hơn) đến tất cả các biến khác. Do đó, 
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trong hệ thống như sau:
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Trong đó  ở các tần số nhất định trong phổ của biến thứ i, một cú sốc trong chuỗi thứ j có thể được 
gán cho phần phổ đó.  

Nhóm tác giả tính kết nối ngắn và dài hạn bằng cách kết hợp tất cả các tần số trong một phạm vi nhất định 
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Các phương trình cuối cùng của nhóm tác giả dựa trên Baruník & Křehlík (2018) về các phép đo miền tần 
số và ước tính miền thời gian của Diebold & Ylmaz (2012, 2014): 

là tần số tương ứng với mật độ 
quang phổ xt của tần số ω. Điều này được thể hiện bằng phép biến đổi Fourier của QVMA(∞): 
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Các phương trình cuối cùng của nhóm tác giả dựa trên Baruník & Křehlík (2018) về các phép đo miền tần 
số và ước tính miền thời gian của Diebold & Ylmaz (2012, 2014):
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(18) 

Khác với các mô hình VAR truyền thống chỉ phản ánh tác động trung bình, mô hình QVAR cho phép phân 
tích mối quan hệ động giữa AI và bất ổn thị trường năng lượng dưới các trạng thái rủi ro khác nhau của thị 
trường. Mỗi phân vị được diễn giải như một trạng thái riêng biệt, từ điều kiện ổn định (các phân vị thấp) đến 
các giai đoạn căng thẳng hoặc khủng hoảng (các phân vị cao). Cách tiếp cận này đặc biệt phù hợp trong bối 
cảnh thị trường năng lượng chịu các cú sốc bất đối xứng, nơi phản ứng của thị trường đối với AI thay đổi 
theo mức độ bất ổn. Do đó, QVAR giúp làm rõ cách các cú sốc công nghệ lan truyền khác nhau giữa các 
trạng thái thị trường.

Trong nghiên cứu này, mô hình QVAR được sử dụng để nhận diện cơ chế truyền dẫn cú sốc hai chiều 
giữa các chỉ số AI và bất ổn năng lượng thông qua phân rã phương sai sai số dự báo tổng quát theo phân vị 
(GFEVD). Việc kết hợp QVAR với khung phân tích kết nối cho phép xác định vai trò truyền sốc ròng hoặc 
nhận sốc ròng của AI dưới các điều kiện thị trường khác nhau. Nhờ đó, mô hình làm rõ tính bất đối xứng và 
phụ thuộc trạng thái của mối quan hệ AI–thị trường năng lượng, vượt ra ngoài các kết quả trung bình của 
các nghiên cứu trước.
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4. Kết quả và thảo luận

4.1. Thống kê mô tả

Hình 1 minh họa lợi nhuận của các chỉ số, trong đó bất ổn về năng lượng biến động cao nhất. Tốc độ tăng 
của chỉ số này gia tăng ổn định cho đến khoảng năm 2020, kèm theo các giao động đáng kể, trước khi đạt 
đỉnh vào cuối năm 2022 và sau đó suy giảm. Xu hướng này được cho là do các cuộc khủng hoảng như đại 
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Hình 1. Tốc độ tăng trưởng 

 
 

Bảng 1 cho thấy tất cả các chuỗi có tăng trưởng trung bình dương, ngoại trừ BOTZ. Đồng thời, EUI và 
ROBT phân phối phi chuẩn (non-normal distribution) theo xác định của Jarque & Bera (1980). Việc áp 
dụng kiểm định nghiệm đơn vị ERS (Elliott & cộng sự, 1996) tiếp tục xác nhận tính dừng (stationarity) của 
tất cả các chỉ số. Tuy nhiên, kết quả trở nên phức tạp hơn khi kiểm định portmanteau có trọng số (Fisher & 
Gallagher, 2012) cho thấy hiện tượng tự tương quan (autocorrelation) chỉ ảnh hưởng đến lợi nhuận trong 
Chỉ số Bất ổn về Năng lượng (EUI). Những phát hiện này cung cấp bằng chứng thuyết phục về việc áp 
dụng Mô hình tự hồi quy phân vị (QVAR) để đánh giá mối quan hệ giữa bất ổn về năng lượng và AI. 

Bảng 1. Thống kê mô tả 

 EUI BOTZ IRBO ROBT 
Mean 0,574 -0,306 0,029 0,324

 (0,860) (0,759) (0,976) (0,731)
Variance 541,821 50,942 46,569 45,655
Skewness 0,726** -0,659** -0,613* -1,111***

 (0,028) (0,043) (0,058) (0,002)
Ex.Kurtosis 0,736 0,079 0,210 2,597***

 (0,163) (0,586) (0,458) (0,006)
JB 5,744* 3,780 3,349 25,307***

 (0,057) (0,151) (0,187) (0,000)
ERS -2,853*** -2,156** -1,986* -2,251**

 (0,007) (0,037) (0,054) (0,030)
Q(20) 25,762*** 11,190 12,591 8,237

 (0,001) (0,383) (0,262) (0,700)

dịch COVID-19 và căng thẳng giữa Nga và Ukraine. Ngược lại, BOTZ, IRBO và ROBT cho thấy mức biến 
động tương đối ổn định trong khoảng từ -20 đến 20, với biến động đáng kể trong nửa cuối năm 2019 đến 
đầu năm 2020.

Bảng 1 cho thấy tất cả các chuỗi có tăng trưởng trung bình dương, ngoại trừ BOTZ. Đồng thời, EUI và 
ROBT phân phối phi chuẩn (non-normal distribution) theo xác định của Jarque & Bera (1980). Việc áp 
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Bảng 1. Thống kê mô tả 

 EUI BOTZ IRBO ROBT 
Mean 0,574 -0,306 0,029 0,324

 (0,860) (0,759) (0,976) (0,731)
Variance 541,821 50,942 46,569 45,655
Skewness 0,726** -0,659** -0,613* -1,111***

 (0,028) (0,043) (0,058) (0,002)
Ex.Kurtosis 0,736 0,079 0,210 2,597***

 (0,163) (0,586) (0,458) (0,006)
JB 5,744* 3,780 3,349 25,307***

 (0,057) (0,151) (0,187) (0,000)
ERS -2,853*** -2,156** -1,986* -2,251**

 (0,007) (0,037) (0,054) (0,030)
Q(20) 25,762*** 11,190 12,591 8,237

 (0,001) (0,383) (0,262) (0,700)
Q2(20) 5,539 4,537 5,724 2,887

 (0,930) (0,972) (0,920) (0,998)
 

4.2. Kết quả mô hình 

Bảng 2 trình bày trung bình kết nối chung. Phần đường chéo trong bảng này đo lường biến động của một 
biến theo sốc của chính biến đó, còn các thành phần khác có hai ý nghĩa. Thứ nhất là tác động của biến số 
này đối với thay đổi của các biến số khác (FROM). Thứ hai là tác động của các biến số khác tới biến động 
của biến số đang xét (TO). Cụ thể, trong Bảng 2, các hàng biểu thị tác động của từng chỉ số riêng lẻ đối với 
phương sai sai số dự đoán của một chỉ số, còn các cột thể hiện ảnh hưởng của chỉ số đó đối với tất cả các 
chỉ số khác. 

Trong Phần A của Bảng 2, giá trị trung bình của TCI là 68,28% chỉ ra sự lan truyền biến động giữa thị 
trường năng lượng và AI giải thích 68,28% sự biến động của thị trường. Như vậy, khoảng hơn 30% sự thay 
đổi phương sai là do sự biến động của chính biến đó. BOTZ là chỉ số  AI truyền sốc ròng chính trên thị 
trường. Trong khi đó, IRBO, sự bất ổn của thị trường năng lượng và ROBT đóng vai trò nhận sốc ròng theo 
mức độ giảm dần. 

Hình 2. Trung bình kết nối chung 

Phần A: Toàn bộ mẫu 
 EUI BOTZ IRBO ROBT FROM 
EUI 38,83 24,95 17,20 19,03 61,17 
BOTZ 17,68 33,80 22,66 25,87 66,20 
IRBO 18,43 30,04 26,94 24,59 73,06 
ROBT 18,03 30,52 24,13 27,32 72,68 
TO 54,15 85,50 63,98 69,48 TCI 
NET -7,02 19,30 -9,07 -3,20 68,28 

Phần B: 1-5 
 EUI BOTZ IRBO ROBT FROM 
EUI 36,21 20,12 15,21 15,86 51,20 
BOTZ 13,94 21,42 16,26 17,07 47,27 
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dụng kiểm định nghiệm đơn vị ERS (Elliott & cộng sự, 1996) tiếp tục xác nhận tính dừng (stationarity) của 
tất cả các chỉ số. Tuy nhiên, kết quả trở nên phức tạp hơn khi kiểm định portmanteau có trọng số (Fisher & 
Gallagher, 2012) cho thấy hiện tượng tự tương quan (autocorrelation) chỉ ảnh hưởng đến lợi nhuận trong Chỉ 
số Bất ổn về Năng lượng (EUI). Những phát hiện này cung cấp bằng chứng thuyết phục về việc áp dụng Mô 
hình tự hồi quy phân vị (QVAR) để đánh giá mối quan hệ giữa bất ổn về năng lượng và AI.

4.2. Kết quả mô hình
Bảng 2 trình bày trung bình kết nối chung. Phần đường chéo trong bảng này đo lường biến động của một 

biến theo sốc của chính biến đó, còn các thành phần khác có hai ý nghĩa. Thứ nhất là tác động của biến số 
này đối với thay đổi của các biến số khác (FROM). Thứ hai là tác động của các biến số khác tới biến động 
của biến số đang xét (TO). Cụ thể, trong Bảng 2, các hàng biểu thị tác động của từng chỉ số riêng lẻ đối với 
phương sai sai số dự đoán của một chỉ số, còn các cột thể hiện ảnh hưởng của chỉ số đó đối với tất cả các 
chỉ số khác.

Trong Phần A của Bảng 2, giá trị trung bình của TCI là 68,28% chỉ ra sự lan truyền biến động giữa thị 
trường năng lượng và AI giải thích 68,28% sự biến động của thị trường. Như vậy, khoảng hơn 30% sự thay 
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Hình 2. Trung bình kết nối chung 

Phần A: Toàn bộ mẫu 
 EUI BOTZ IRBO ROBT FROM 
EUI 38,83 24,95 17,20 19,03 61,17 
BOTZ 17,68 33,80 22,66 25,87 66,20 
IRBO 18,43 30,04 26,94 24,59 73,06 
ROBT 18,03 30,52 24,13 27,32 72,68 
TO 54,15 85,50 63,98 69,48 TCI 
NET -7,02 19,30 -9,07 -3,20 68,28 

Phần B: 1-5 
 EUI BOTZ IRBO ROBT FROM 
EUI 36,21 20,12 15,21 15,86 51,20 
BOTZ 13,94 21,42 16,26 17,07 47,27 
IRBO 14,11 19,37 19,30 16,27 49,75 
ROBT 12,52 17,43 14,73 15,74 44,68 
TO 40,57 56,92 46,21 49,20 TCI 
NET -10,63  9,65 -3,54 4,52 48,23 

Phần C: 5-inf 
 EUI BOTZ IRBO ROBT FROM 
EUI 2,62 4,82 1,98 3,17 9,98 
BOTZ 3,74 12,38 6,39 8,80 18,93 
IRBO 4,32 10,67 7,64 8,32 23,31 
ROBT 5,52 13,09 9,40 11,58 28,00 
TO 13,58 28,58 17,77 20,28 TCI 
NET 3,60 9,65 -5,53 -7,72 20,05 

 

 

Mỗi chỉ số có vai trò khác nhau trong ngắn hạn và dài hạn. Tổng kết nối trung bình (TCI) trong ngắn hạn 
cho thấy sự lan truyền sốc giữa các chỉ số giải thích 48,23% sự biến động chung. Tuy nhiên, trong dài hạn, 
chỉ số này giảm đột biến còn 20,05%. Kết quả này chứng tỏ rằng sự lan truyền sốc giữa bất ổn năng lượng 
và AI trong ngắn hạn thường lớn hơn so với dài hạn. BOTZ giữ nguyên vai trò truyền sốc ròng và IRBO 
vẫn nhận sốc ròng trong cả hai thời kì. Bên cạnh đó, sự bất ổn của thị trường năng lượng lại chuyển từ nhận 
sốc ròng sang truyền sốc ròng trong dài hạn. Trong khi ROBT có vai trò đối lập EUI. 

Hình 2. Tổng kết nối chung thay đổi theo thời gian 

đổi phương sai là do sự biến động của chính biến đó. BOTZ là chỉ số  AI truyền sốc ròng chính trên thị 
trường. Trong khi đó, IRBO, sự bất ổn của thị trường năng lượng và ROBT đóng vai trò nhận sốc ròng theo 
mức độ giảm dần.

Mỗi chỉ số có vai trò khác nhau trong ngắn hạn và dài hạn. Tổng kết nối trung bình (TCI) trong ngắn hạn 
cho thấy sự lan truyền sốc giữa các chỉ số giải thích 48,23% sự biến động chung. Tuy nhiên, trong dài hạn, 
chỉ số này giảm đột biến còn 20,05%. Kết quả này chứng tỏ rằng sự lan truyền sốc giữa bất ổn năng lượng 
và AI trong ngắn hạn thường lớn hơn so với dài hạn. BOTZ giữ nguyên vai trò truyền sốc ròng và IRBO vẫn 
nhận sốc ròng trong cả hai thời kì. Bên cạnh đó, sự bất ổn của thị trường năng lượng lại chuyển từ nhận sốc 
ròng sang truyền sốc ròng trong dài hạn. Trong khi ROBT có vai trò đối lập EUI.
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Hình 2 trình bày tổng kết nối theo phân vị. Màu sắc đậm hơn trên biểu đồ cho thấy mức độ kết nối lớn 
hơn. Ngoài ra, mức phân vị 50% có tổng kết nối ổn định trong toàn bộ mẫu. Dải màu trên trục tung thể hiện 
thời điểm rủi ro khác nhau giữa các phân vị, điều này có thể cho thấy khủng hoảng kinh tế tổng quát. Các 
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Hình 3. Kết nối ròng thay đổi theo thời gian: QVAR 

 
 

Tiếp theo, kết nối ròng theo phân vị được trình bày trong Hình 5. Trên các biểu đồ này, các màu ấm hơn 
cho thấy vai trò truyền sốc ròng và ngược lại. Các chỉ số gia tăng nhận và truyền sốc ròng ở phân vị trên 
80%. Các cuộc khủng khoảng trong giai đoạn 2020-2021 (sau COVID-19) và 2022 (Khủng hoảng Nga - 
Ukraine) có tác động đáng kể. Đầu tiên, bất ổn trên thị trường năng lượng chủ yếu nhận sốc ròng trong năm 
2020 ở tất cả phân vị và ở phân vị dưới 20% và trên 80% vào năm 2022. Trong khi đó, bất ổn năng lượng 
truyền sốc ròng trên tất cả phân vị năm 2019 và truyền sốc ròng mạnh mẽ năm 2021 ở phân vị trên 60%. 
BOTZ, IRBO, ROBT chủ yếu truyền sốc ròng trên tất cả các phân vị trong năm 2020 và 2022. Trong khi 
đó, các chỉ số này nhận sốc ròng ở các phân vị dưới 20% và trên 80% trong năm 2021. 
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Hình 4. Kết nối ròng theo phân vị: QVAR 

a. EUI b. BOTZ 

c.IRBO d. ROBT 

 

 

Cuối cùng, kết nối theo cặp làm rõ vai trò của từng chỉ số đối với các chỉ số khác. Đặc biệt, đối với bất ổn 
năng lượng, kết nối theo cặp trong dài hạn đa phần trùng với xu hướng trong ngắn hạn. Bất ổn năng lượng 
đa phần bị chi phối bởi các chỉ số AI như BOTZ, IRBO, ROBT từ 2020 tới đầu năm 2021 và từ cuối 2021 
tới cuối 2022. Trong khi đó, vào giữa năm 2019 và giữa năm 2021, bất ổn năng lượng chi phối ngược lại 
các chỉ số AI. Nói cách khác, AI đóng vai trò quan trọng trong việc ổn định biến động năng lượng trong cả 
ngắn hạn và dài hạn. Kết quả nghiên cứu này đã cung cấp bằng chứng thực nghiệm ủng hộ giả thuyết H1 
được xây dựng trước đó. Tác động của AI đối với bất ổn năng lượng bao gồm cả hai chiều. Về mặt tiêu 
cực, theo World Economic Forum (2025), tình thế nan giải về năng lượng liên quan đến các công nghệ AI 
đã làm dấy lên mối lo ngại ngày càng tăng, do các hoạt động của trung tâm AI - như huấn luyện các mô 
hình AI lớn và duy trì các tương tác AI - đặc biệt tiêu tốn năng lượng, tạo ra những lo ngại đồng thời về 
tiêu tốn năng lượng và tài nguyên. Dự báo đến năm 2028, mức tiêu thụ điện liên quan đến AI có thể tăng 
lên từ 14 đến 18,7 GW đặt ra thách thức đối với hệ thống điện (Statista, 2023). 

Mặt khác, AI cũng giúp các công ty sản xuất tối ưu hóa năng lượng và nâng cao hiệu quả hoạt động (Liu & 
cộng sự, 2022). Giá trị thị trường của AI trong lĩnh vực năng lượng có thể đạt tới 13 tỷ USD, nhấn mạnh 
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tốc độ được áp dụng nhanh chóng trong toàn bộ chuỗi cung ứng, quản lý tài nguyên và vận hành (Chapman 
& cộng sự, 2025). Ủy ban Châu Âu đã xác định “chuyển đổi kép” (twin transition), coi tiến trình hướng tới 
năng lượng sạch và AI là song song và mang tính bổ trợ lẫn nhau (Tabares & cộng sự, 2025).  

Bên cạnh đó, có mối quan ngại lớn liên quan đến sự bất cân xứng trong tốc độ phát triển AI giữa nhóm các 
quốc gia và làm trầm trọng thêm khoảng cách công nghệ toàn cầu. Hiện nay, các nước phát triển giữ vị thế 
tiên phong trong cuộc đua AI, nhiều quốc gia đang phát triển có nguy cơ tụt lại phía sau và bị phụ thuộc 
công nghệ, thậm chí bị xem như những “vùng ngoại vi công nghệ” trong trật tự kinh tế số mới (Alonso & 
cộng sự, 2020; Fan & Quiang, 2024). 

  

Hình 5. Kết nối theo cặp ròng thay đổi theo thời gian 

 
 

5. Kết luận và giải pháp 

Nghiên cứu sử dụng mô hình QVAR để đánh giá mức độ lan truyền rủi ro giữa bất ổn năng lượng và các 
chỉ số AI từ tháng 6/2018 tới tháng 10/2022. Nghiên cứu chứng minh sự thay đổi theo thời gian của mức 

thời điểm nổi bật như dịch COVID-19 bắt đầu từ năm 2020 và cuộc chiến Ukraine-Nga bùng phát vào ngày 
24 tháng 2 năm 2022 có màu cam đậm hơn ở tất cả phân vị. Tính liên kết xung quanh giá trị trung bình của 
trục y đối xứng cho thấy mức độ lan truyền sốc giữa thị trường năng lượng và AI trở nên mạnh mẽ trong cả 
điều kiện thị trường bình ổn lẫn khi xảy ra khủng hoảng.

Trong nghiên cứu về tính kết nối, vai trò truyền sốc ròng của các biến rất quan trọng với nhà quản lý rủi 
ro và nhà đầu tư. Kết nối ròng trong ngắn hạn cho thấy một chỉ số đóng vai trò truyền sốc ròng hoặc nhận 
sốc ròng. Ngược lại, cơ chế lan truyền trong dài hạn cung cấp cái nhìn tổng quan. Nghiên cứu phân tích tổng 
kết nối ròng trong cả hai thời kì. Các chỉ số đóng vai trò khác nhau trong những thời điểm khác nhau trong 
Hình 3. Vai trò của sự bất ổn trên thị trường năng lượng trong ngắn hạn vượt trội trong dài hạn. Sự biến 
động năng lượng chủ yếu nhận sốc ròng từ 2020 tới 2022 trừ một thời gian ngắn truyền sốc ròng vào năm 
2019 và giữa năm 2021. Trong khi đó, BOTZ chủ yếu đóng vai trò truyền sốc ròng đối lập với EUI trong 
cả ngắn hạn và dài hạn. IRBO và ROBT chủ yếu đóng vai trò nhận sốc ròng trong dài hạn từ 2019 tới đầu 
2022. Ngược lại, trong ngắn hạn, IRBO và ROBT nhận sốc ròng trước năm 2020 và nửa cuối năm 2021 và 
chuyển sang truyền sốc ròng trong giai đoạn 2020 - giữa 2021. Từ năm 2022, IRBO chuyển sang nhận sốc 
ròng còn ROBT đóng vai trò ngược lại.

Tiếp theo, kết nối ròng theo phân vị được trình bày trong Hình 5. Trên các biểu đồ này, các màu ấm hơn 
cho thấy vai trò truyền sốc ròng và ngược lại. Các chỉ số gia tăng nhận và truyền sốc ròng ở phân vị trên 
80%. Các cuộc khủng khoảng trong giai đoạn 2020-2021 (sau COVID-19) và 2022 (Khủng hoảng Nga - 
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Ukraine) có tác động đáng kể. Đầu tiên, bất ổn trên thị trường năng lượng chủ yếu nhận sốc ròng trong năm 
2020 ở tất cả phân vị và ở phân vị dưới 20% và trên 80% vào năm 2022. Trong khi đó, bất ổn năng lượng 
truyền sốc ròng trên tất cả phân vị năm 2019 và truyền sốc ròng mạnh mẽ năm 2021 ở phân vị trên 60%. 
BOTZ, IRBO, ROBT chủ yếu truyền sốc ròng trên tất cả các phân vị trong năm 2020 và 2022. Trong khi đó, 
các chỉ số này nhận sốc ròng ở các phân vị dưới 20% và trên 80% trong năm 2021.

Cuối cùng, kết nối theo cặp làm rõ vai trò của từng chỉ số đối với các chỉ số khác. Đặc biệt, đối với bất ổn 
năng lượng, kết nối theo cặp trong dài hạn đa phần trùng với xu hướng trong ngắn hạn. Bất ổn năng lượng 
đa phần bị chi phối bởi các chỉ số AI như BOTZ, IRBO, ROBT từ 2020 tới đầu năm 2021 và từ cuối 2021 
tới cuối 2022. Trong khi đó, vào giữa năm 2019 và giữa năm 2021, bất ổn năng lượng chi phối ngược lại các 
chỉ số AI. Nói cách khác, AI đóng vai trò quan trọng trong việc ổn định biến động năng lượng trong cả ngắn 
hạn và dài hạn. Kết quả nghiên cứu này đã cung cấp bằng chứng thực nghiệm ủng hộ giả thuyết H1 được 
xây dựng trước đó. Tác động của AI đối với bất ổn năng lượng bao gồm cả hai chiều. Về mặt tiêu cực, theo 
World Economic Forum (2025), tình thế nan giải về năng lượng liên quan đến các công nghệ AI đã làm dấy 
lên mối lo ngại ngày càng tăng, do các hoạt động của trung tâm AI - như huấn luyện các mô hình AI lớn và 
duy trì các tương tác AI - đặc biệt tiêu tốn năng lượng, tạo ra những lo ngại đồng thời về tiêu tốn năng lượng 
và tài nguyên. Dự báo đến năm 2028, mức tiêu thụ điện liên quan đến AI có thể tăng lên từ 14 đến 18,7 GW 
đặt ra thách thức đối với hệ thống điện (Statista, 2023).

Mặt khác, AI cũng giúp các công ty sản xuất tối ưu hóa năng lượng và nâng cao hiệu quả hoạt động (Liu 
& cộng sự, 2022). Giá trị thị trường của AI trong lĩnh vực năng lượng có thể đạt tới 13 tỷ USD, nhấn mạnh 
tốc độ được áp dụng nhanh chóng trong toàn bộ chuỗi cung ứng, quản lý tài nguyên và vận hành (Chapman 
& cộng sự, 2025). Ủy ban Châu Âu đã xác định “chuyển đổi kép” (twin transition), coi tiến trình hướng tới 
năng lượng sạch và AI là song song và mang tính bổ trợ lẫn nhau (Tabares & cộng sự, 2025). 

Bên cạnh đó, có mối quan ngại lớn liên quan đến sự bất cân xứng trong tốc độ phát triển AI giữa nhóm 
các quốc gia và làm trầm trọng thêm khoảng cách công nghệ toàn cầu. Hiện nay, các nước phát triển giữ vị 
thế tiên phong trong cuộc đua AI, nhiều quốc gia đang phát triển có nguy cơ tụt lại phía sau và bị phụ thuộc 
công nghệ, thậm chí bị xem như những “vùng ngoại vi công nghệ” trong trật tự kinh tế số mới (Alonso & 
cộng sự, 2020; Fan & Quiang, 2024).

5. Kết luận và giải pháp

Nghiên cứu sử dụng mô hình QVAR để đánh giá mức độ lan truyền rủi ro giữa bất ổn năng lượng và các 
chỉ số AI từ tháng 6/2018 tới tháng 10/2022. Nghiên cứu chứng minh sự thay đổi theo thời gian của mức độ 
lan truyền rủi ro khi bùng phát COVID-19 và khủng hoảng Nga-Ukraine, bất ổn trên thị trường năng lượng 
chủ yếu nhận sốc ròng trong năm 2020 ở tất cả phân vị và ở phân vị dưới 20% và trên 80% vào năm 2022. 
Trong khi đó, bất ổn năng lượng truyền sốc ròng trên tất cả phân vị năm 2019 và truyền sốc ròng mạnh mẽ 
năm 2021 ở phân vị trên 60%. Kết nối theo cặp cho thấy bất ổn năng lượng đa phần bị chi phối bởi các chỉ 
số AI như BOTZ, IRBO, ROBT từ 2020 tới đầu năm 2021 và từ cuối 2021 tới cuối 2022. Trong khi đó, vào 
giữa năm 2019 và giữa năm 2021, bất ổn năng lượng chi phối ngược lại các chỉ số AI. Nói cách khác, AI có 
trách nhiệm đã đóng vai trò quan trọng trong việc ổn định biến động năng lượng trong cả ngắn hạn và dài 
hạn. AI sẽ đóng vai trò then chốt trong việc tối ưu hóa tài nguyên và dự báo giá cả. Sự mở rộng của AI đòi 
hỏi sự giám sát quy định chặt chẽ hơn, các chính sách thúc đẩy việc ứng dụng AI một cách có đạo đức, cũng 
như các can thiệp thị trường dựa trên AI nhằm tăng cường an ninh năng lượng.

Nghiên cứu này có đóng góp quan trọng cả về mặt lý thuyết lẫn thực tiễn đối với liên kết động giữa AI 
và an ninh năng lượng. Về mặt lý thuyết, bằng việc tiên phong ứng dụng mô hình QVAR, nghiên cứu đã 
làm sáng tỏ đặc tính phi tuyến, bất đối xứng theo bối cảnh thị trường của cơ chế lan truyền rủi ro. Thay vì 
chỉ tập trung vào tác động trung bình, nghiên cứu chỉ ra rằng vai trò của bất ổn năng lượng có thể thay đổi 
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linh hoạt từ nhận sốc sang truyền sốc tùy theo các điều kiện thị trường ở những phân vị cực đoan khi xảy ra 
khủng hoảng.

Về mặt thực tiễn, nghiên cứu gợi ý cho nhà đầu tư đặc biệt trong việc thiết kế các chiến lược đa dạng hóa 
danh mục và quản trị rủi ro theo hướng hiệu quả và thích ứng hơn với biến động. Đối với giới hoạch định 
chính sách, kết quả làm nổi bật nhu cầu xây dựng một cơ chế giám sát và điều hành, vừa tạo điều kiện cho 
AI phát huy vai trò ổn định hệ thống, vừa giảm thiểu nguy cơ rủi ro mang tính lan truyền do sự gắn kết ngày 
càng sâu giữa công nghệ và thị trường năng lượng.

Dựa trên các kết quả về kết nối động giữa AI và thị trường năng lượng đặc biệt trong các cuộc khủng 
hoảng, một số hàm ý chính sách được đề xuất như sau. Trước hết, cần xây dựng một khuôn khổ giám sát 
rủi ro hệ thống mang tính linh hoạt, trong đó áp dụng các chỉ số cảnh báo sớm dựa trên phân vị nhằm nhận 
diện kịp thời nguy cơ lan truyền rủi ro. Ngoài ra, để tận dụng vai trò ổn định của công nghệ, chính sách cần 
chủ động thúc đẩy đổi mới AI có trách nhiệm thông qua các cơ chế hỗ trợ nghiên cứu - phát triển (R&D) và 
mô hình thử nghiệm pháp lý (sandbox), đặc biệt ưu tiên các giải pháp góp phần giảm thiểu biến động trong 
lĩnh vực năng lượng. 
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